jueves, 6 de noviembre de 2008



SEXUALIDAD




De acuerdo con la Organización Mundial de la Salud (OMS) "la sexualidad es un aspecto central del ser humano, presente a lo largo de su vida. Abarca al sexo, las identidades y los papeles de género, el erotismo, el placer, la intimidad, la reproducción y la orientación sexual. Se vivencia y se expresa a través de pensamientos, fantasías, deseos, creencias, actitudes, valores, conductas, prácticas, papeles y relaciones interpersonales. La sexualidad puede incluir todas estas dimensiones, no obstante, no todas ellas se vivencian o se expresan siempre. La sexualidad está influida por la interacción de factores biológicos, psicológicos, sociales, económicos, políticos, culturales, éticos, legales, históricos, religiosos y espirituales" (OMS, 2006).
La sexualidad es el conjunto de condiciones
anatómicas, fisiológicas y psicológico-afectivas del mundo animal que caracterizan cada sexo. También es el conjunto de fenómenos emocionales y de conducta relacionados con el sexo, que marcan de manera decisiva al ser humano en todas las fases de su desarrollo.
Durante siglos se consideró que la sexualidad en los animales y en los hombres era básicamente de tipo
instintivo. En esta creencia se basaron las teorías para fijar las formas no naturales de la sexualidad[cita requerida], entre las que se incluían todas aquellas prácticas no dirigidas a la procreación[cita requerida].
Hoy, sin embargo, se sabe que también algunos
mamíferos muy desarrollados, como los delfines o algunos pingüinos, presentan un comportamiento sexual diferenciado, que incluye, además de homosexualidad (observada en más de 1500 especies de animales),[1] variantes de la masturbación y de la violación. La psicología moderna deduce, por tanto, que la sexualidad puede o debe ser aprendida[cita requerida].


SEXUALIDAD HUMANA



De acuerdo con la Organización Mundial de la Salud (OMS) "la sexualidad es un aspecto central del ser humano, presente a lo largo de su vida. Abarca al sexo, las identidades y los papeles de género, el erotismo, el placer, la intimidad, la reproducción y la orientación sexual. Se vivencia y se expresa a través de pensamientos, fantasías, deseos, creencias, actitudes, valores, conductas, prácticas, papeles y relaciones interpersonales. La sexualidad puede incluir todas estas dimensiones, no obstante, no todas ellas se vivencian o se expresan siempre. La sexualidad está influida por la interacción de factores biológicos, psicológicos, sociales, económicos, políticos, culturales, éticos, legales, históricos, religiosos y espirituales" (OMS, 2006).
La sexualidad es el conjunto de condiciones
anatómicas, fisiológicas y psicológico-afectivas del mundo animal que caracterizan cada sexo. También es el conjunto de fenómenos emocionales y de conducta relacionados con el sexo, que marcan de manera decisiva al ser humano en todas las fases de su desarrollo.
Durante siglos se consideró que la sexualidad en los animales y en los hombres era básicamente de tipo
instintivo. En esta creencia se basaron las teorías para fijar las formas no naturales de la sexualidad[cita requerida], entre las que se incluían todas aquellas prácticas no dirigidas a la procreación[cita requerida].
Hoy, sin embargo, se sabe que también algunos
mamíferos muy desarrollados, como los delfines o algunos pingüinos, presentan un comportamiento sexual diferenciado, que incluye, además de homosexualidad (observada en más de 1500 especies de animales),[1] variantes de la masturbación y de la violación. La psicología moderna deduce, por tanto, que la sexualidad puede o debe ser aprendida[cita requerida].


HERENCIA GENETICA






La herencia genética es la transmisión a través del material genético contenido en el núcleo celular, de las características anatómicas, fisiológicas, etc. de un ser vivo a sus descendientes. El ser vivo resultante tendrá caracteres de uno o los dos padres.
La herencia consiste en la transmisión a su descendencia de los caracteres de los ascendentes. El conjunto de todos los caracteres transmisibles, que vienen fijado en los genes, recibe el nombre de
genotipo y su manifestación exterior en el aspecto del individuo el de fenotipo. Se llama idiotipo al conjunto de posibilidades de manifestar un carácter que presenta un individuo.
Para que los genes se transmitan a los descendientes es necesaria una reproducción idéntica que dé lugar a una réplica de cada uno de ellos; este fenómeno tiene un lugar en la
mitosis. En el organismo que surge del cigoto, a medida que va desarrollándose a partir del cúmulo inicial de célula es posible diferenciar dos estirpes celulares: una línea somática, que dará lugar a los sistemas orgánicos que mantendrán con vida al organismo, y otra germinal, que será la encargada de que el organismo se reproduzca.
La mitosis, o división del núcleo de la célula, es un proceso que consta de cuatro etapas:
profase (los cromosomas se espiralizan y hacen visibles, desaparecen el nucleolo y la membrana nuclear, aparece una serie de filamentos llamado huso acromático donde se insertan los cromosomas), metafase (los cromosomas adquieren una forma completa y se disponen en una zona central llamada placa ecuatorial), anafase (los cromosomas se dividen en dos partes, llamadas cromatidios, que emigran hacia los polos) y telofase (los cromatidios se sitúan en los polos y reaparecen el nucleolo y la membrana nuclear). Después de esta última fase se produce un periodo llamado interfase, en el cual los cromosomas vuelven a hacerse invisibles y los genes entran en acción.
Lo esencial de la herencia queda establecido en la denominada teoría cromosómica de la herencia:
los genes están situados en los cromosomas.

los genes están dispuestos linealmente en los cromosomas.
la recombinación de los genes se corresponde con el intercambio de segmentos cromosómicos.

Críticas a la definición de herencia como herencia genética [editar]
La Teoría de los sistemas de desarrollo (DST), se opone a la definición de herencia como transmisión de genes y aplica el concepto a cualquier recurso que se encuentre en generaciones sucesivas y que contribuya a explicar por qué cada generación se parece a la que le precede. Estos recursos incluyen factores celulares y factores externos como la gravedad o la luz solar. La DST utiliza, por tanto, el concepto de herencia para explicar la estabilidad de la forma biológica de una generación a otra.
La genética (del término "Gen", que proviene de la palabra griega γένος y significa "raza, generación") es el campo de las ciencias biológicas que trata de comprender cómo la herencia biológica es transmitida de una generación a la siguiente, y cómo se efectúa el desarrollo de las características que controlan estos procesos.

arn


ARN



El ácido ribonucleico (ARN o RNA) es un ácido nucleico formado por una larga cadena de nucleótidos. Se ubica en las células de tipo procariota y las de tipo eucariota. El ARN se define también como un material genético de ciertos virus (virus ARN) y, en los organismos celulares, molécula que dirige las etapas intermedias de la síntesis proteica. En los virus ARN, esta molécula dirige dos procesos: la síntesis de proteínas (producción de las proteínas que forman la cápsula del virus) y replicación (proceso mediante el cual el ARN forma una copia de sí mismo). En los organismos celulares es otro tipo de material genético, llamado ácido desoxirribonucleico (ADN), el que lleva la información que determina la estructura de las proteínas. Pero el ADN no puede actuar solo, y se vale del ARN para transferir esta información vital durante la síntesis de proteínas (producción de las proteínas que necesita la célula para sus actividades y su desarrollo).
Como el ADN, el ARN está formado por una cadena de compuestos químicos llamados nucleótidos. Cada uno está formado por una molécula de un azúcar llamado ribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina, guanina, uracilo y citosina. Estos compuestos se unen igual que en el ácido desoxirribonucleico (ADN). El ARN se diferencia químicamente del ADN por dos cosas: la molécula de azúcar del ARN contiene un átomo de oxígeno que falta en el ADN; y el ARN contiene la base uracilo en lugar de la timina del ADN.
El ARN es
transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado en el transcurso por muchas más proteínas. El uracilo, aunque es muy diferente, puede formar puentes de hidrógeno con la adenina, lo mismo que la timina lo hace en el ADN. El porqué el ARN contiene uracilo en vez de timina es actualmente una pregunta sin respuesta.

ARN, el mensajero [editar]
Parte del ADN se transcribe en ARN. El ARN va como un mensajero al citoplasma y allí el
ribosoma es el lugar físico para la traducción de los genes a proteínas.

Tipos de ARN [editar]
ARN codificantes:
ARN mensajero (mRNA o ARNm)
ARN no codificantes (ncRNA o ARNnc):
intrones (que representan el 30% del genoma)
ARN que se expresan de forma autónoma (50-70% de la transcripción total en los eucariotas superiores):
básicos:
ARN de transferencia (tRNA o ARNt)
ARN ribosómico (rRNA o ARNr)
ARN nucleolar (snoRNA)
pequeños ARN nucleares (snRNA), implicados en
splicing
ARN de la
telomerasa
reguladores:
ARN de interferencia
micro ARN

ARN en otros organismos [editar]
El ARN es el material genético usado por los virus, y el ARN también es importante en la producción de proteínas en otros organismos vivos. La mecánica del ARN en los organismos eucarioticos es similar en los organismos
procarióticos. El ARN puede moverse dentro de las células de los organismos vivos y por consiguiente sirve como una suerte de mensajero genético, transmitiendo la información guardada en el ADN de la célula, desde el núcleo hacia otras partes de la célula donde se usa para ayudar a producir proteínas. Una sola hebra de ADN se usa a la vez, el RNA polimerasa es la enzima que cataliza el proceso y las bases nitrogenadas son las mismas. Solo que en los procariotas, no existe el núcleo delimitado por membrana (carioteca).

Transcripción [editar]
El ARN se transcribe a partir de una de las dos cadenas del ADN. En caso contrario, al transcribirse ambas al mismo tiempo, de una de las hélices saldría una proteína y de la otra algo totalmente diferente.
Por ejemplo, si en una de las cadenas de ADN hubiera: GATACA, en la otra cadena, la homóloga, debería haber: CTATGT.
La primera al transcribirse a ARN daría dos
codones: GAU-ACA. La segunda CUA-UGU.
La primera formaría la cadena de aminoácidos siguiente. En el primer caso:
Ácido Aspártico-Treonina y en el segundo caso: Leucina-Cisteína.
Que sólo se transcriba una hélice no significa que siempre sea la misma a lo largo de todo el
cromosoma. Puede transcribirse una hélice en un sitio y otra en otro.
En la traducción de codones a aminoácidos intervienen otras moléculas de ARN, las llamadas
ARN de transferencia.
Algunas moléculas de ARN presentan
actividad catalítica, y son conocidas como ribozimas. La mayoría de los ARN son autocatalíticos, ya que catalizan su propio procesamiento. Su hallazgo es relativamente reciente, y antes se consideraba que solo las proteínas eran las únicas macromoléculas capaces de poseer actividad catalítica.

Bases Nitrogenadas y complemento [editar]
Están formadas por pares de bases, la unión de estas es semejante a la del ADN, pero difiere en que la adenina (A) se une al uracilo (U), entonces su complemento es:
- Uracilo (U) con Adenina (A)
- Citosina (C) con Guanina (G)
U - A
C - G

Azúcar [editar]
El ARN contiene el glúcido
pentosa (o sea de con 5 carbonos) llamada ribosa y sus moléculas están formadas también por pares de bases, de ahí ribonucleico.

Función a la materia viva [editar]
La función principal del ARN es servir como intermediario a la información que le lleva el ADN en forma de genes y la proteína final codificada por esos genes. El ARN es transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado por muchas más proteínas. El código genético de las células se encuentra en forma de ADN. Dentro de las moléculas de ADN se encuentra la información necesaria para sintetizar las proteínas que utiliza el organismo, pero el proceso no es lineal, es bastante complejo.

jueves, 30 de octubre de 2008









ADN





El ácido desoxirribonucleico, frecuentemente abreviado como ADN (y también DNA, del inglés DeoxyriboNucleic Acid), es un ácido nucleico que contiene las instrucciones genéticas usadas en el desarrollo y el funcionamiento de todos los organismos vivos conocidos y también de los virus, excepto algunos cuyo material genético es ARN (los retrovirus). La función principal de las moléculas de ADN es el de ser portador y transmisor entre generaciones de información genética. El ADN a menudo es comparado metafóricamente a un manual de instrucciones, ya que este contiene las "instrucciones" para construir otros componentes de las células, como moléculas de ARN y proteína. Los segmentos de ADN que llevan la información genética se llaman genes, aunque otras secuencias de ADN tienen funciones estructurales o están implicadas en la regulación del empleo de esta información genética; de esta manera, el ADN adopta un papel multifuncional y básico.
Químicamente, el ADN es un largo
polímero de unidades simples llamadas nucleótidos con un armazón hecho de azúcares y grupos de fosfato unidos alternativamente entre sí mediante enlaces de tipo éster. Unido covalentemente a cada azúcar se encuentra una base nitrogenada: adenina, timina, citosina o guanina. La disposición secuencial de estas cuatro bases a lo largo de la cadena es la que codifica la información. Esta información es interpretada usando el código genético, que especifica la secuencia de los aminoácidos de las proteínas, según una correspondencia de un triplete de nucleótidos (codón) por cada aminoácido. El código es interpretado copiando los tramos de ADN en un ácido nucleico relacionado, el ácido ribonucleico (ARN), en un proceso llamado transcripción.
Dentro de las
células, el ADN está organizado en estructuras llamadas cromosomas. Estos cromosomas se duplican antes de que las células se dividan, en un proceso llamado replicación de ADN. Los organismos Eucariotas (animales, plantas, y hongos) almacenan la inmensa mayoría de su ADN dentro del núcleo celular y una mínima parte en los orgánulos celulares mitocondrias, y en los cloroplastos en caso de tenerlos; en procariotas (las bacterias y archaeas) se encuentra en el citoplasma de la célula; y en los virus de ADN, se encuentra en el interior de la cápsida. Las proteínas cromáticas, como las histonas, comprimen y organizan el ADN dentro de los cromosomas. Estas estructuras compactas dirigen las interacciones entre el ADN y otras proteínas, ayudando al control de las partes del ADN que son transcritas.


La molécula de ADN está constituída por dos largas cadenas de nucleótidos unidas entre sí formando una doble hélice. Las dos cadenas de nucleótidos que constituyen una molécula de ADN, se mantienen unidas entre sí porque se forman enlaces entre las bases nitrogenadas de ambas cadenas que quedan enfrentadas.


Historia [editar]

Friedrich Miescher, médico suizo fallecido en 1895.
El ADN fue aislado por primera vez en 1869, a partir del
pus de vendas quirúrgicas desechadas, por el médico suizo Friedrich Miescher.[1] [2] Lo llamó "nucleína" debido a su localización en el núcleo celular. Se necesitaron casi 70 años de investigación para poder identificar los componentes y la estructura de los ácidos nucleicos.
En 1919
Phoebus Levene identificó que un nucleótido está formado por una base, un azúcar y un fosfato.[3] Levene sugirió que el ADN formaba una estructura con forma de solenoide (muelle) con unidades de nucleótidos unidos a través de los grupos fosfato. En 1930 Levene junto con su maestro Albrecht Kossel probaron que la nucleína de Miescher es un ácido desoxirribonucleico (ADN) formado por cuatro bases nitrogenadas: citosina (C), timina (T), adenina (A) y guanina (G); el azúcar desoxirribosa, y un grupo fosfato; y que la estructura básica del ADN (el nucleótido) estaba compuesta por un azúcar unido a la base y al fosfato.[4] Sin embargo, Levene pensaba que la cadena era corta y que las bases se repetían en un orden fijo. En 1937 William Astbury produjo el primer patrón de difracción de rayos X que mostraba que el ADN tenía una estructura regular.[5]

Maclyn McCarty con Francis Crick y James D Watson.
En 1928,
Frederick Griffith descubrió, utilizando la bacteria Pneumococcus como modelo, que un «factor transformante» era capaz de conferir virulencia a cepas avirulentas.[6] Más adelante, en 1944, Oswald Avery, Colin MacLeod y Maclyn McCarty identificaron dicho factor transformante como ADN.[7] Finalmente, el papel del ADN en la heredabilidad fue desvelado en 1952 mediante los experimentos de Alfred Hershey y Martha Chase, en los cuales comprobaron que el fago T2 transmitía su información genética en su ADN, pero no en su proteína.[8]

Erwin Chargaff, científico que estableció la equimolecularidad de las bases en el ADN.

Rosalind Elsie Franklin (1920 – 1958), química y cristalógrafa inglesa que hizo importantes contribuciones en la comprensión de la estructura fina del ADN, los virus, el carbón y el grafito.
En cuanto a la caracterización química de la molécula, en 1940
Chargaff realizó algunos experimentos que le sirvieron para establecer las proporciones de las bases nitrogenadas en el ADN. Descubrió que las proporciones de purinas eran idénticas a las de pirimidinas; la "equimolecularidad" de las bases ([A]=[T], [G]=[C]) y que la cantidad de G+C en una determinada molécula de ADN no siempre es igual a la cantidad de A+T y puede variar desde el 36% al 70% del contenido total.[4] Con esta información y junto con los datos de difracción de rayos X proporcionados por Rosalind Franklin; James Watson y Francis Crick propusieron en 1953 el modelo de la doble hélice de ADN para representar la estructura tridimensional del polímero.[9] En una serie de cinco artículos en el mismo número de Nature se publicó la evidencia experimental que apoyaba el modelo de Watson y Crick.[10] De éstos, el artículo de Franklin y Raymond Gosling fue la primera publicación con datos de difracción de rayos X que apoyaba el modelo de Watson y Crick,[11] [12] y en dicho número de Nature también aparecía un artículo sobre la estructura del ADN de Maurice Wilkins y sus colegas.[13]
En 1962, después de la muerte de Franklin, los científicos Watson, Crick y Wilkins recibieron conjuntamente el Premio Nobel en Fisiología o Medicina.[14] Sin embargo, el debate continúa sobre quién debería recibir crédito por el descubrimiento.[15]